
"POLITEHNICA" UNIVERSITY OF TIMIŞOARA

Department of MATERIALS and MANUFACTURING ENGINEERING

BS-ERA NET – Program BS 7-046/2011

HYSULFCEL

Production of Hydrogen from Black Sea Water using Fuel Cells based on Hydrogen Sulfide

> Vaszilcsin Nicolae Serban Viorel-Aurel Kellenberger Andrea Raduta Aurel Manea Florica Nicoara Mircea Duteanu Narcis Dan Mircea Laurentiu Serac Anuta

 \bullet

 \bullet

Study of The Influence of Hydrogen Sulfide upon Materials Used on Equipment for Hydrogen Storage

 \bullet

۲

Content

- II.6.1. Effects of H₂S upon Metallic Materials
 - **1. Effect of H₂S upon steels**
 - Direct effect
 - Influence of pH Level
 - Concentration of Hydrogen Sulfide
 - Indirect effect of hydrogen upon steels
 - Hydrogen attack
 - Hydrogen blistering
 - Embrittlement in the presence of hydrogen

 \bullet

- Cracking in the presence of hydrogen
- 2. Effect of H₂S on aluminum
- **3.** Effect of H₂S on copper
- **4. Effect of H₂S on titanium**

1. Effect of H_2S upon steels

Direct effect

- □ Anodic dissolving \leftarrow slight *acid* character (dissolved in H₂O)
- \Box Inhibiting effect on corrosion \leftarrow passivizing layer FeS
- Layer composition *disputed* (depending of concentration in H_2S)
- Pyrite (FeS₂ cubic crystallization system)
- Troilite (FeS hexagonal crystallization system)
- \succ Kansite (Fe₉S₈)
- > **Pirhotite** (Fe_(1-x)S, $x = 0 \dots 0.2$)
- > Mackinawite ((Fe,Ni)_{1 + x}S, with $x = 0 \dots 0.11$), tetragonal crystallization)

Effect of anti-corrosive protection

- \Rightarrow 3 parameters:
- > **pH level** of aqueous environment
- \succ Concentration in H₂S of solution (acts like electrolyte)
- > **Time** of immersion of iron-based components

pH level of aqueous environment

• Predominant opinion: 1st component on corroded surface is *mackinawite* (metastable)

۲

• Changes to stable form: *troilite* and *pyrite*.

Mechanism of transformation in acid H₂S solutions

• $Fe + H_2S + H_2O \leftrightarrow FeSH_{ads} + H_3O^+$ (1)

The compound FeSH adsorbed in the surface subject to corrosion:

(3)

- $\operatorname{FeSH}_{\operatorname{ads}} \leftrightarrow \operatorname{Fe}(\operatorname{SH})_{\operatorname{ads}} + e^{-}$ (2)
- $Fe(SH)_{ads} \rightarrow FeSH^+ + e^-$

+

ightarrow

Reaction product FeSH⁺ - incorporated directly on corroded surface into the *mackinawite* layer :

• $\text{FeSH} \rightarrow \text{FeS}_{1-x} + x\text{SH}^{-} + (1-x) \text{H}^{+}$ (4)

Another possibility : hydrolysis \Rightarrow separation of Fe²⁺

• $\text{FeSH}^+ + \text{H}_3\text{O}^+ \leftrightarrow \text{Fe}^{2+} + \text{H}_2\text{S} + \text{H}_2\text{O}$ (5)

Reaction (4) determines:

- local saturation
- local germination &
- development of one or more iron sulfides (*mackinawite* or *troilite*)

Anodic process depending on the pH-level:

pH < 2

- Reaction (5) &
- Small quantities of sulfide forms

(relatively higher solubility of FeS phases)

$\mathbf{pH}=\mathbf{3...5}$

- H₂S inhibiting effect
- FeSH⁺ \Rightarrow partially *mackinawit* reaction (4).
- *mackinawite* could change to *troilite*
- (higher stability & better protecting properties).

$pH \ge 5$

- only *mackinawite* as reaction product
- protection property of *mackinawite* is lower ⇒ inhibiting effect of H₂S ↓

Concentration of H₂S

- ↑% H₂S generate ⇒ *kansite* (many structural defects) ⇒ poor protection to corrosion for Fe (less than *pyrite* or *troilite*)
- ↑% H₂S ⇒ deposition of *mackinawite* on corroded surface (layer adherent) ⇒
 NO inhibition effect on corrosion.

SSC = ,,sulfide stress cracking"
Under combined effect
Environmental factors
Tensile stress conditions

! Promoted by high density of defects
(heat treatments, cold deformation etc.)
! Steels require both ↑Rm + ↑K

SSC caused by atomic H

- H adsorption in the presence of sulfides FeS.
- Atomic H diffuses inside metal ⇒ fragility, sensitization to cracking

Predisposed to SSC.

- High resistance metallic materials
- Hard areas within welded joints (HAZ)

Exemple

Steel tubes transporting products containing H_2S HRC > 22 (σ_c > 550 MPa)

• **A**sensibility to SSC

• corrosion propagates \perp to load (inter-granular or trans-granular cracks) HRC < 22 - soft steel

 \bullet

- resistant to SSC
- incipient crack are surrounded by a soft matrix
- does not promote crack propagation

Ni alloying \uparrow susceptibility to SSC

- H₂S in presence of Ni delays recombination of H atoms to molecular state of gaseous H ⇒ diffusion of H in steel
- Cracking is caused by hydrogen embrittlement (HE)

International normative for material selection

NACE MR0175/ISO 15156 - *Non-alloyed* and *low alloyed* steels resistant to cracking and use of cast iron

 requirements & recommendations for environments containing H₂S (petrol & natural gas industry)

۲

- Example: Steel with <1% Ni accepted:
- HRC < 22
- conditions of heat treatment:
- a) hot laminated (only non-alloyed steels)
- b) annealed
- c) normalized
- d) normalized and tempered
- e) normalized, quenched and tempered
- f) quenched and tempered

International normative for material selection

NACE MR0175/ISO 15156 - *Non-alloyed* and *low alloyed* steels resistant to cracking and use of cast iron

Example: Welded joint

- Heat Affected Zone (HAZ) max. 250 HV
- Heating temperature for post-welding treatment min. 620 °C

• Limitations to the filling material

International normative for material selection

NACE MR0175/ISO 15156 - Corrosion resistant alloys and other alloys

- Transport or process fluids containing hydrogen sulfide:
- Materials
 - Austenitic stainless steels
 - Nickel-based alloys,
 - Ferritic stainless steels,
 - Martensitic stainless steels,
 - Duplex stainless steels,
 - Precipitation hardening steels and Ni-based alloys,
 - Alloys based on Co, Ti, Ta, Cu, Al

Connected with formation of atomic H:

- $H_2S \rightarrow 2H^+ + S^{2-}$
- $Fe + 2H^+ \rightarrow Fe^{++} + 2H^0$
- $2H^0 \rightarrow H_2$

H is produced at the anode of a *galvanic micro-cell* at the same time with the formation of FeS

(6)

Effect of interaction of H with steels

Attack Type	Environment	Type of Material Degradation	Prevention Methods
Hydrogen attack	T> 230°C, Pressure $H_2 > 7$ atm	Decarburizing; Cracking; Significant reduction of strength	Selection of appropriate alloys
Formation of blisters ("hydrogen blistering")	T> 100°C, presence of H_2S , Accentuated by cyanides	Blisters, when the defect is superficial; Cracks for profound defects	Protection depositions; Selection of appropriate materials
Embrittlement in the presence of hydrogen	T> 100°C, presence of H_2S , Accentuated by cyanides	Significant reduction of ductility	Similar with "hydrogen blistering"
Cracking in the presence of hydrogen	At ambient temperature, as effect of rapid cooling, similar with hydrogen attack	Significant reduction of ductility; Increase of cracks	Selection of appropriate materials

 \bullet

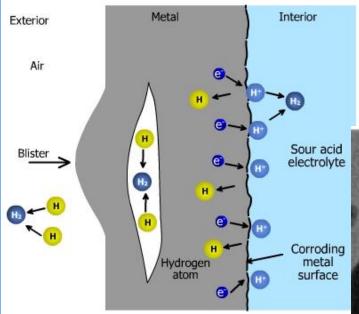
۲

 \bullet

•

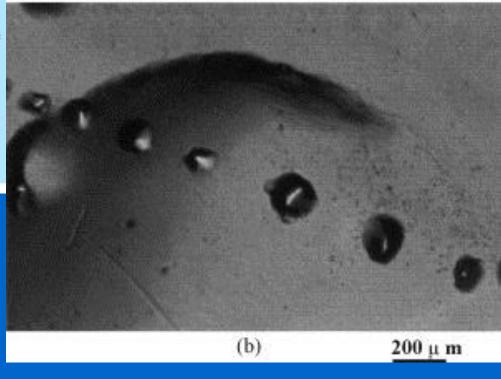
Hydrogen attack

- Presence of atomic H (decomposition of H_2S)
- T > 230°C, p_H > 7 atm Fe₃C + 4H \rightarrow 3Fe + CH₄ (7)
- Local decarburization $\Rightarrow \sqrt{Rm}$
- Blisters of CH₄ methane (not H)
- Prevention using stabilized steels


Hydrogen blistering

Process:

- H diffusion inside the steel
- H caption by a non-metallic inclusion or at grain limits
- Producing molecular H (cannot diffuse) ⇒ localized in gaseous state (↑↑p) ⇒ pores (blisters) & cracks
- Cracks -parallel with the surface, on the sheet's lamination direction at different depth.


• Interconnected cracks leading to material destruction.

Hydrogen blistering

Blistering process

Formation of blisters

Hydrogen embrittlement

- H.E. = $\downarrow \downarrow A$ of steel in the presence of H
- H atom << Fe \rightarrow migrate into Fe lattice
- Reside *interstitially* between the individual metal atoms \rightarrow amplify σ of applied forces

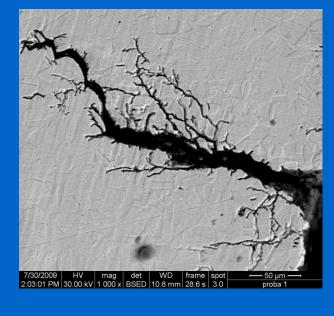
 \bullet

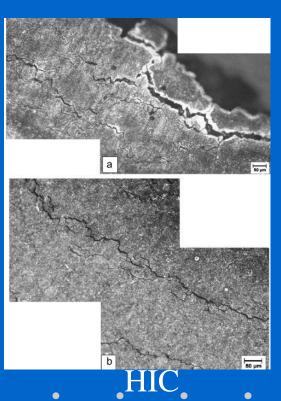
- Catastrophic fracture for $\sigma \ll \sigma_C$
- Susceptible -
 - Hardened steels (HRC > 40)
 - Non-alloyed steels

Steel cracking in the presence of H

HSC – H stress cracking *or* HIC – H induced cracking *or* "static fatigue"

- Similar with fatigue fracture
- At $\sigma < \sigma_C$
- Similar to fatigue fracture has a limit σ_{HIC} ($\sigma < \sigma_{HIC}$) fracture does NOT propagate


Steel cracking in the presence of H


2 stages (similar with fatigue fracture)

- H absorption H diffuses regions with $\uparrow \sigma$
- Brittle fracture single crack, with a smooth breaking surface

UNLIKE stress corrosion cracking SSC -

multiple cracks

Steel cracking in the presence of H

Another difference between SSC and HIC

- SSC propagates \perp to surface
- HIC propagates I to surface

Aggravating of HIC: .atomic H accumulates at grain limits and nonmetallic inclusions

Effect of H₂S upon Al

- No effect on Al till 500°C (dry/wet)
- No significant effect in $H_2S + NH_3$
- Lower resistance at $H_2S + 30-50\%$ CO₂
- Differences between alloys

A 11	Temperature		
Alloys	49°C	71°C	
3003	0.05	0.01	
5052	0.05	0.01	
6061	0.05	1.1	

Dissolution speed in $H_2S + NH_3$ solutions (mm per year).

Effect of hydrogen on Al

- Dry gaseous H has NO negative effect on Al
- H blistering only on melting & heat treating (reaction with H₂O vapors)

Effect of H on Cu and its alloys

Only when Cu or Cu alloy contains O • $Cu_2O + 2H = 2Cu + H_2O(g)$ H diffuses inside the Cu reacts with O (solid solution or oxides) and forms water (cavities).

Effect of H on Ti and its alloys

- Formations of Titanium hydride (βTi) -(high concentration of H)
- Embritlement at plastic deformation (cpTi more sensitive than pure Ti)
 Embritlement at impact (α/βTi, βTi)

"POLITEHNICA" UNIVERSITY OF TIMIŞOARA

Department of MATERIALS and MANUFACTURING ENGINEERING

Bd. Mihai Viteazul nr. 1, 300222 Timisoara, ROMANIA Tel.: +40-256-403626; E-mail: mircea.nicoara@mec.upt.ro